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Abstract

In this paper, we present an efficient method to compute singular points and singu-

larity induced bifurcation points of differential-algebraic equations (DAEs) for a multi-

machine power system model. The algebraic part of the DAEs brings singularity issues

into dynamic stability assessment of power systems. Roughly speaking, the singular

points are points that satisfy the algebraic equations, but at which the vector field is

not defined. In terms of power system dynamics, around singular points, the generator

angles (the natural states variables) are not defined as a graph of the load bus variables

(the algebraic variables). Thus, the causal requirement of the DAE model breaks down

and it cannot predict system behavior. Singular points constitute important organizing
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elements of power system DAE models. This paper proposes an iterative method to

compute singular points at any given parameter value. Generator angles are parameter-

ized through a scalar parameter in the constraint manifold and identification of singular

points is formulated as a bifurcation problem of the algebraic part of the DAEs. Singu-

lar points are determined using a second order Newton–Raphson method. Moreover,

the decoupled structure of the DAE model is exploited to find new set of parameters

and parameter increase pattern which will result in a set of equilibria including singular-

ity induced bifurcations. The simulation results are presented for a 5-bus power system

and singular and singularity induced bifurcation points are depicted together with equil-

ibria to visualize static and dynamic stability limits.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The differential-algebraic equations (DAEs) are widely used to describe the

dynamics of many systems such non-linear electric circuits, multibody mechan-

ical systems, chemical processes and electric power systems. The dynamics of a

classical power system with constant PQ load buses are commonly described by

semi-explicit differential-algebraic equation (DAE) of the form [1,2]:

_dg ¼ x;

_x ¼ �½M�1D�x�M�1½fgðdg; d‘; V Þ � P g�;
f‘ðdg; d‘; V Þ � P ‘ ¼ 0;

g‘ðdg; d‘; V Þ � Q‘ ¼ 0;

ð1Þ

where dg is the vector of generators� rotor angles, x is the vector of generators�
angular velocities, d‘ is the vector of phase angles of voltages at the load buses,V

is the vector of voltage magnitudes, M is the inertia matrix, D is the damping

matrix, Pg is the vector of net real power injections at the generator buses,

and finally P‘ and Q‘ are the vectors of net real and reactive power injections
at the load buses, respectively. The differential equation is the swing equation

describing dynamics of each generator, and algebraic equations are the power

flow equations representing real and reactive power balances at the load buses.

In order to obtain a compact form of (1), if we let x ¼ ½dTg xT�T; y ¼
dT‘ V T�T; bg ¼ ½0T ð�M�1P gÞT�T and b‘ ¼ PT

‘ QT
‘

� �T
, then we have

_x ¼ f ðx; yÞ � bg;

0 ¼ gðx; yÞ � b‘;
ð2Þ
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where

f ðx; yÞ ¼ xT ð�M�1Dx�M�1fgðdg; d‘; V ÞÞT
� �T

;

f : Rn � Rm � Rk ! Rn

and

gðx; yÞ ¼ f T
‘ ðdg; d‘; V Þ gT‘ ðdg; d‘; V Þ

� �T
;

g : Rn � Rm � Rk ! Rm are C1:

It is well known that when parameters are subject to variations, the equili-

bria of the index-1 DAE of (2) may exhibit singularity induced (SI) bifurcation

[3] as well as other frequently encountered local bifurcations such saddle node

(SN) and Hopf bifurcations. With an SI bifurcation theorem ([3, Theorem 3, p.

1999]), an improved version of it based on the decomposition of parameter

dependent polynomials can also be found in [4], Venkatasubramanian et al.
have shown that the SI bifurcation occurs when system equilibria encounter

the singularity manifold and it refers to a stability change owing to one eigen-

value of a reduced Jacobian matrix associated with the equilibrium diverging to

infinity. Beardmore [5] has extended the SI bifurcation theorem of [3] to include

non-generic cases whereby branching of equilibria is located at the singularity

(i.e., the assumption 2 of the SI bifurcation theorem in [3] is lifted) and applied

it to a 3-bus power system, which has been also studied by Kwatny et al. [1].

Riaza et al. [6] have provided a detailed study on the qualitative nature of sin-
gular points indicating that in some cases dynamic behavior of the system is

smooth (well-defined vector field) even at singular points.

An important implication of the occurrence of the SI bifurcation is the exist-

ence of a singular set (or impasse surface) in the constraint manifold containing

infinitely many singular points at each parameter value, which may play a cru-

cial role in assessing the stability of DAE power system models. The literature

in power system stability analysis with respect to the algebraic singularities of

the DAEs is rich with references describing voltage instabilities in terms of the
following: Eventual (or actual) loss of voltage causality, i.e., load bus variables

(the algebraic variables) y cannot be described as a function of generator var-

iables (the natural state variables) x [1], sudden change in voltages [7], nearness

to an impasse surface [8,9], and loss of the small-signal stability in a real power

system due to the occurrence of an SI bifurcation [10], to name a few. In [7],

Hiskens et al. have shown that the existence of the impasse surface is closely

related to the load models, and for constant load model the DAE model has

the properties of voltage instability (i.e., sudden reduction in voltages) when
operating in the vicinity of impasse points (or trajectories coinciding with the

impasse surface). In [8,9], Loparo et al. have reported similar results and using

the bifurcation theory they have shown that an important part of the stability

boundary is formed by trajectories that are tangent to the singular surface. In
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[10], Lerm et al. have studied local bifurcations in a real multi-parameter power

system modeled as DAEs (South Brazilian power system) for which they have

reported that stability region boundary of an operating point (i.e., an equilib-

rium point) contains SI bifurcations.

In spite of the fact that there is no well-established link between algebraic

singularity and voltage collapse as in the case of the SN bifurcation, most of
the work suggests that the system undergoes some sort of voltage instability

when the voltage causality is lost during a transient. With respect to loss of

voltage causality it is essential to note that during this, voltages are no longer

implicit functions of dynamic variables when described by DAE models. To

use DAE as a tool, knowledge of where causality disappears (or where impasse

surface(s) ‘‘lie’’) can be applied towards the definition of ‘‘limits’’ of appropri-

ateness for a given model. An underlying issue is that at singular points (includ-

ing SI bifurcation points) the DAE model cannot predict the voltage behavior.
Thus, location of singularities, which constitute important organizing elements

of a power system DAE model, is invaluable information for assessing stability

of the system. The family of singular points forms a boundary of well-defined

behavior for a given model. In this work impasse surface is a set of singular

points that exhibits loss of voltage causality.

Even though many researchers either in the field of electric power systems [1–

3,7–10] or in the field of the general DAE theory [4–6] have long recognized the

importance of singular points (or loss of voltage causality in power system appli-
cations) including SI bifurcation points in terms of system dynamics, there is no

rigorous method available in the literature for computing their locations as a

function of the system parameter. Most of the effort focuses on characterizing

qualitative description of system dynamics around singularities without provid-

ing a systematic method to compute their locations in terms of system parame-

ters, especially for large electric power systems. For relatively simple DAEs a

convenient method to compute SI bifurcation points has been recently reported

in [11] in which the DAE model is extended to an enlarged model by taking into
account the SI bifurcation conditions. It has been shown that under some non-

degeneracy conditions the SI bifurcation points of the original DAEs are asso-

ciated with the regular equilibrium points (i.e., the point at which Jacobian ma-

trix is non-singular) of the extended model. However, the implementation of this

method is yet to be explored for the DAE models of electric power system.

This paper proposes a simple and efficient method to identify algebraic sin-

gularities (including SI bifurcation points) of the DAE model of power systems

and to visualize singularities together with the equilibria and their associated
local bifurcations as a function of the parameters using nose curves. In power

system applications, nose curves are 2-dimensional (2-D) depiction of the evo-

lution of the equilibria with respect to the changes in system parameters, and

are usually used to show static stability margin of a current operating point

in the parameter space. We bring the singular point information into the nose
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curve and illustrate changes in both system equilibria and singular points as the

parameter varies. This way of bringing information gathered from state space

to parameter space gives a visual representation of the static and dynamic

boundaries together in the same picture. The proposed method involves the fol-

lowing two main steps:

1. Computation of singular points at various parameter values along the nose

curve defined by a designated bus injection (i.e., the system parameter)

change pattern and illustrating singular points in the nose curve together

with the equilibrium points.

2. Using the knowledge of location of singular points and exploiting the decou-

pled-parameter structure of DAE model of (2), identification of a new set of

parameters and parameter increase pattern such that a selected singular

points becomes an SI bifurcation point.

In the method for computing singular points, we first use generator angles to

parameterize the algebraic part of the DAE model at any given parameter

value (i.e., bus injections) and formulate the problem of identifying singular

points as a bifurcation problem of a set of algebraic equations whose para-

meters are the generator angles. Then, at any given parameter value we imple-

ment an iterative technique that combines well-known Newton–Raphson (NR)

and Newton–Raphson–Seydel (NRS) [12] methods to compute singular points
as being SN bifurcations of load bus voltage magnitudes and angles in the con-

straint manifold. Finally, we exploit the decoupled-parameter structure of the

DAE model of our interest to compute new set of parameters and parameter

increase pattern such that any of the previously computed singular points be-

come an SI bifurcation point.
2. Singularities of the DAE power system model

The general methods for studying the power system dynamics require the

reduction of the DAE model of (2) to a locally equivalent set of ordinary dif-

ferential equations (ODEs). However, this is possible only for the case when

the algebraic variables (y) can be represented as functions of dynamic variables

(x), which is known as voltage causality requirement [1]. In other words, at any

causal point, say (x*,y*,b*), the implicit function theorem ensures that there ex-

ists a function w(x,b) defined on a neighborhood of (x*,b*) with y* = w (x*,b*)
and that satisfies g(x,w(x,b)) � b‘ = 0. It follows that trajectories of the DAE

are locally defined by the ODEs:
_x ¼ /ðx; bÞ ¼ f ðx;wðx; bÞ; bÞ ð3Þ
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Typically, in a major part of the constraint manifold defined by

MðbÞ ¼ fðx; yÞ 2 Rnþmjgðx; yÞ � b‘ ¼ 0; b ¼ constantg ð4Þ
such a reduction is possible and the ODEs uniquely define the dynamic behav-

ior of DAEs. However, the constraint manifold will in general contain non-cas-
ual points (or singular points) at which equivalence is not possible. These

singular points form a singular surface (or impasse surface) in the constraint

manifold [3,7]. The singular surface is defined as

SðbÞ ¼ fðx; yÞ 2 Rnþmjgðx; yÞ � b‘ ¼ 0; det½Dyðgðx; yÞ � b‘Þ� ¼ 0g: ð5Þ

The SI bifurcation occurs when an equilibrium point, say (x0,y0) encounters

the singularity of the algebraic equation, g (x,y) � b‘ = 0 [3]. The SI bifurcation

refers to stability change due to an eigenvalue of the reduced system matrix

[Asys] = Dx fj0 � Dyfj0 [Dygj0]�1Dygj0 associated with the equilibrium point

diverging to infinity from either �1 to +1, or vice versa. The set of SI bifur-
cation is defined as follows:

SIðbÞ ¼ ðx; y; bÞ 2 Rnþmþk f ðx; yÞ � bg ¼ 0; gðx; yÞ � b‘ ¼ 0

det½Dyðgðx; yÞ � b‘Þ� ¼ 0

����
� �

ð6Þ
Remark 1. Note that since a singular (xs,ys) 2 S(bs) at the parameter

bs = [bsg bs‘]
T is not an equilibrium point in general, there exists a non-zero

parameter mismatch Dbsg representing real power mismatches at the generator

buses, i.e., _x ¼ f ðxs; ysÞ � bsg ¼ Dbsg 6¼ 0 while g (xs,ys) � bs‘ = 0 and

det[Dy (g (xs,ys) � bs‘)] = 0. Moreover, observe that the parameter bg in (2) is

decoupled from the rest of equation. This decoupled-parameter structure
allows us to find a new set of parameters bnewg such that a singular point (xs,ys)

will be an SI bifurcation point (i.e., a singular equilibrium point) at this new

parameter. In order to force a zero mismatch at the generator buses we can

always define a new set of parameters bnewg ¼ bsg þ Dbsg such that

_x ¼ f ðxs; ysÞ � bnew
g ¼ 0;

gðxs; ysÞ � bs‘ ¼ 0;

det½Dyðgðxs; ysÞ � bs‘Þ� ¼ 0:

ð7Þ

Therefore, a singular point (xs,ys) 2 S (bs) = S (bnew) at the parameter
bs = [bsg bs‘]

T is an SI bifurcation point at the new parameter bnew ¼ ½bnew
g bs‘�

T
.

This remark indicates that we are able to identify the SI bifurcation points

once singular points and the corresponding non-zero real power mismatch

values at the singular points are available. In the following section we present

an interative method to compute singular points at any given parameter value

b = [bg b‘]
T. The real power mismatches Dbsg can be easily computed by
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evaluating differential equations at the singular point, i.e., Dbsg =
f (xs,ys) � bsg.
3. Identification of singular points

In this section, we present an algorithm to compute singular points of DAE

model of (2) at any given parameter value, b. The method is an iterative tech-

nique that combines well-known NR and NRS methods, which are commonly

used to compute SN bifurcations of the equilibria in power systems [2]. The

proposed algorithm benefits from the knowledge of the system equilibria and

the occurrence of the SI bifurcation. Generator angles are parameterized

through a scalar parameter in the constraint manifold. Then, at any given

parameter value, the identification of a singular point is formulated as a bifur-
cation problem of a set of algebraic equations whose parameters are the gen-

erator angles. In the following, we explain why we parameterize generator

angles and how this parameterization is achieved.

3.1. Parameterization of generator angles

Recall that the algebraic part of the DAE model of (2) represents the real

and reactive power equations at the PQ load buses

0 ¼ gðdg; yÞ � b‘: ð8Þ
At a fixed parameter value, the constraint manifold consists of a set of

points (dg,y) satisfying (8). The constraint manifold contains set of regular

points at which the Jacobian matrix [Dy (g (x,y) � b‘)] is non-singular and sin-

gular points. The set of regular points is known as voltage causal region in

power system applications. The singular points lie on the boundary of the volt-

age causal regions. Fig. 1 hypothetically illustrates a magnified segment of the

constraint manifold composed of two voltage causal regions, C1 and C2, and a
singular point (dgs,ys) connecting two regions. Note that the region C1 contains

an equilibrium point, upper equilibrium point, ðdug; yuÞ while the region C2 con-

tains another equilibrium point, lower equilibrium point ðd‘g; y‘Þ. These equili-

bria correspond to the high and low voltage equilibrium (or operating) points

at a given parameter value b.
Observe that for any given generator angle dg there are two corresponding

solutions for the algebraic variable y that represents the load bus voltage mag-

nitude and phase angle. As the generator angle increases, these two solutions
move along the regions C1 and C2 until they meet at the singular point (dgs,ys).
At the singular point, the Jacobian matrix [Dy (g (x,y) � b‘)] becomes singular

and there is no solution for y if dg is further increased. This observation indi-

cates that algebraic variables meets at the singular point and they undergo an



Fig. 1. Graphical illustration of the method for computing singular points.

442 S. Ayasun et al. / Appl. Math. Comput. 167 (2005) 435–453
SN bifurcation. This behavior is similar to the SN bifurcation of the equilibria

as the bus injections change. This observation leads us to use generator angles

as parameters and to seek methods to compute the SN bifurcations of algebraic
varibles, which is a singular point of the DAE model.

In order to trace the corresponding segment of the manifold and to compute

the singular point shown in Fig. 1 we need to implement an iterative method

that initiates at a point in C1 and ends up at another point in C2 passing

through the singular point (dgs,ys). The upper and lower equilibrium points

are the obvious choice for the starting and ending points of the algorithm since

they are available to us from the equilibria computation. The following para-

meterization of the generator angles will achieve that purpose:

dg ¼ ½ð1� lÞdug þ ld‘g�; ð9Þ

where du and d‘ are (n � 1)-dimensional vectors representing the generator an-

gles at the upper and lower equilibrium points at a given parameter value b,
respectively, and l is a new scalar bifurcation parameter.

With this parameterization, the identification of the singular point of the

constraint manifold at a fixed parameter b reduces to a single parameter bifur-
cation problem of the following equation:

gðy; lÞ ¼ 0: ð10Þ
Note that we drop the parameter b‘ in (10) for the sake of simplicity in the

notation. Clearly, the SN bifurcation (i.e., branching) of the algebraic variables

y as the bifurcation parameter l changes will be a singular point of the con-

straint manifold at the corresponding parameter b. In the following section,
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we describe a two-staged algorithm that implements the NR and NRS methods

to locate the singular points.

3.2. A combined NR and NRS method

As we have explained in the previous section, a singular point of the DAE
model at a given parameter is a static bifurcation point of the load bus voltage

magnitude and phase angles when the generator angles are subject to vary.

Thus, the problem of computing a singular point is equivalent to identification

of the SN bifurcation of the algebraic equation (10) as the scalar parameter l
varies (thus, dg changes through (9)). Therefore, we seek a singular point (y,l)
in the constraint manifold such that rank [Dy (g (y,l) � b‘)] = m � 1. In other

words, the singular points must belong to the constraint manifold and the

Jacobian matrix must have a simple eigenvalue at the origin. We can rewrite
these conditions as follows:

gðy; lÞ ¼ 0; ð11Þ

½Dygðy; lÞ�vy ¼ 0; ð12Þ

kvyk2 � 1 ¼ 0; ð13Þ
where y 2 Rm is the algebraic variables (load bus voltage magnitude and phase
angles), ½Dygðy; lÞ� 2 Rm�m is the Jacobian matrix of the algebraic equations,

vy 2 Rm is the right eigenvector corresponding to the zero eigenvalue of the

Jacobian matrix, and l 2 R1 is the bifurcation parameter used to vary the gen-

erator angles. Observe that (13) assures that the eigenvector vy is non-trivial.

Eq. (12) together with Eq. (11) establishes the singularity of Jacobian matrix.

The conventional NR method is the most common iterative technique to

compute the roots of non-linear algebraic equations. This method can be ap-

plied to (10) as follows:

½Dygðyi; lÞ�Dy ¼ �gðyi; lÞ; yiþ1 ¼ yi þ Dy ð14Þ

The above iterative scheme works well almost every point in the constraint

manifold. However, it will fail to converge around a singular point since the

Jacobian matrix is close to the singularity. The NRS method has been effec-
tively used to compute static bifurcation of the equilibria in power systems

[2]. In order to apply the NRS method to (11)–(13), a real eigenvalue (k) of
[Dyg (y,l)] is introduced as an independent variable. That will make it possible

to implement an iterative scheme that goes around the singular point:

h1 ¼ gðy; lÞ ¼ 0;

h2 ¼ ½Dygðy; lÞ � kI �vy ¼ 0;

h3 ¼ kvyk2 � 1 ¼ 0

ð15Þ



444 S. Ayasun et al. / Appl. Math. Comput. 167 (2005) 435–453
There are a total of (2m + 1) equations in (15) and the same number of un-

known variables while k is the independent variable. For a given k, (15) can be

solved for the unknowns ẑ ¼ ½y vy l�T

½DẑHðẑiÞ�Dẑ ¼ �HðẑiÞ; ẑiþ1 ¼ ẑi þ Dẑ; ð16Þ

where H ¼ ½hT1 hT2 hT3 �
T
and ½DẑHðẑÞ� is the corresponding extended Jacobian

matrix of (15) that includes the second-order derivatives.

The NRS algorithm, like any other Newton-iterative method, needs a good

initial condition, that is a point in the constraint manifold close enough to the

singular point along with the smallest real eigenvalue of [Dyg (y,l)] and the

corresponding right eigenvector vy. Otherwise, we may experience convergence

problems. Therefore, we first use the NR method. The NR computations pro-

ceed starting at the upper equilibrium point (l = 0) along the constraint mani-
fold until it fails to converge. The last successful NR data point is used to

implement an inverse iteration method [13] for estimating the eigenvalue of

[Dyg (y,l)] nearest k = 0, and the corresponding right eigenvector vy. This data

is then used to initiate an NRS procedure using (16) to compute around the

singular point for values of k 2 [�e1, e2] with e1, e2 > 0. The value k = 0 is always

included and data at the singular point is thereby obtained.
4. Computation of new bus injections change pattern in parameter space

In the DAE model of classical power systems with constant PQ load buses,

the set of parameter b = [bg b‘]
T represents real/reactive power injections at the

buses. For a network consisting of the ng number of generators and npq number

of PQ load buses, the bg parameter vector is in the form of bg =
[0T (�M�1Pg)

T]T where Pg = [P2 . . . Png
]T denotes net real power injections

to the ng � 1 number of generators. The set of parameters b‘ ¼ ½PT
‘ QT

‘ �
T
de-

notes the load demands at the npq number of load buses where P ‘ ¼
½Pngþ1 . . . Pngþnpq �

T
and Q‘ ¼ ½Qngþ1 . . .Qngþnpq �

T
are the real and reactive power

demands, respectively. Local bifurcation analyses of power systems identify

qualitative changes in system equilibria, such as number of equilibria and their

small-signal stability features as the bus injections are subject to vary. Changes

in bus injections are achieved through parameterization of bus injections with a

scalar parameter known as a bifurcation parameter

b ¼ b0 þ a � directionb ð17Þ
where b0 is the base case bus injections, a is the scalar bifurcation parameter

and directionb ¼ dT
P g

dT
P ‘

dT
Q‘

h iT
is the direction vector in the parameter

space, which allows us to vary bus injections at a single bus and/or group of

buses. The elements of direction b are given below:
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dP g
¼ dP2

. . . dPng

� �T
; dP ‘

¼ dPngþ1
. . . dPngþnpq

� �T
;

dQ‘
¼ dQngþ1

. . . dQngþnpq

� �T
: ð18Þ

In power system applications, the evolution of system equilibria as the bifur-

cation parameter a varies is usually illustrated through the (2-D) equilibrium

surfaces known as nose curves. Fig. 2 shows two nose curves each representing

a different bus injection increase pattern defined by direction b0 and direction

bnew. Note that along the nose curve of direction b0 two local bifurcations of

equilibria, SI and SN bifurcations are illustrated. Of interest is the SI bifurca-

tion that is said to have occurred when an equilibrium point meets a singular

point associated with a bus injection increase pattern, say direction b0. Note
that various singular points along the nose curve are denoted by (x).

By Remark 1 given in the previous section, we show that any of these sin-

gular points could become an SI bifurcation point. For any of these singular

points it is of our interest to determine a new bus injection change pattern,

say direction bnew, such that the corresponding nose curve pass through the sin-

gular point as depicted in Fig. 2 by the nose curve of direction bnew indicating

the occurrence of an SI bifurcation.

Remark 2. If we have a singular point (xs,ys) computed at a = as for a

designated bus injection change pattern defined by direction b0 and the
Fig. 2. Illustration of bifurcations of system equilibria and singular points in a 2-D nose curve.
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corresponding non-zero real power mismatches at the generator buses DPsg; a

new bus injection change pattern defined by direction bnew that will cause the

resulting nose curve to pass through this singular point at a = as (i.e. an SI

bifurcation) can easily be obtained. From (17) and (18), it is obvious that

generator bus injections associated with direction b0 at the singular point (xs,ys)
are given by

P sg ¼ P 0
g þ asd

0
P g
: ð19Þ

By the Remark 1, the new generator bus injections such that this singular point

becomes an SI bifurcation point will be

P new
g ¼ P 0

g þ asd
0
P g
þ DP sg: ð20Þ

By (17), this new injection can be achieved by

P new
g ¼ P 0

g þ asd
new
P g

: ð21Þ

From (20) and (21) the new search direction corresponding to the generator

buses will be

dnew
P g

¼ d0
Pg
þ 1

as
DP sg: ð22Þ

Note that it is clear that components of the new direction vector correspond-

ing to the PQ load buses (i.e., dP‘
and dQ‘

) will not change: dnew
P ‘

¼ d0
P ‘
;

dnew
Q‘

¼ d0
Q‘
.

5. Simulation results

In this section, we present the application of the method for computing sin-
gular points and SI bifurcations presented in the previous sections to a 5-bus

power system with three generators and two constant PQ load buses [8], whose

one-line diagram is illustrated in Fig. 3. The base case bus injections in per unit

(pu) with a 100 MW base are as follows:

P 0
g ¼ P 2 P 3½ �T ¼ 5 5½ �T; P 0

‘ ¼ P 4 P 5½ �T ¼ �10 �5½ �T and

Q0
‘ ¼ Q4 Q5½ �T ¼ �3 �2½ �T pu

Generators, which are undamped with unity inertia, have the internal voltages

E = [1.2 1.2 1.2]T pu that are equal to terminal voltages since the reactance

xd = 0.1 pu includes the transient reactances of the generator and transmission

line. The generator 1 is chosen as the swing bus with zero angle and all the

other phase angles are relative to the swing bus.

In order to determine a set of equilibrium points we vary mechanical inputs
to the generators 2 and 3 (P2 and P3); and real/reactive power demand at bus 4



Fig. 3. One-line diagram of the 5-bus electric power system.
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while the power factor is kept constant at this bus. The resulting search direc-

tion in the bus injection space is as follows: d0
Pg

¼ ½0:5 0:5�T; d0
P ‘
¼ ½�0:5 0�T;

d0
Q‘

¼ ½�0:15 0�T. Note that entries of d0
Pg

are set be positive, which indicates

increase in generators� mechanical power input and those of d0
P ‘

and d0
Q‘

are

set to be negative (or zero for the bus 5), which indicates increase in real/reac-

tive power demand at the PQ load bus 4.

Fig. 4 illustrates how the equilibria for the voltage magnitude at bus 4 (V4)

and their corresponding small-signal stability characteristics change with

parameter variations. Observe that as the parameter a varies the system equil-
ibria undergo SN and SI bifurcations labeled as SN and SI (S1), respectively.

As the bus injections are increased through the scalar parameter a both high
Fig. 4. Voltage magnitude at bus 4 (V4) and singular points vs. parameter alpha (a) for directionb0.
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voltage equilibrium (SEP)h and low voltage equilibrium (SEP)l points are

dynamically stable. However, at aSI = 0.785 the low voltage equilibrium point

undergoes a stability exchange (stable ! unstable) due to an SI bifurcation and

it becomes a type-1 unstable equilibrium point. Further increase in the para-

meter a causes the high and low voltage equilibria meet at an SN bifurcation

for aSN = 0.8.
The SN and SI bifurcations are detected by monitoring the eigenvalues of

system matrix as the system moves from one equilibrium point to another with

changes in the bifurcation parameters a. Fig. 5 shows how two critical eigen-

values of the system matrix moves as a changes from a = 0.773 to a = 0.8 along

the lower branch of nose curve; which leads to SI and SN bifurcations. The ar-

rows indicate the direction of increase in the parameter a. Just before the SI

bifurcation; say at a = 0.773, the critical eigenvalues (please note that non-crit-

ical ones are not shown in Fig. 5) are located in the left half plane, which im-
plies stability. As the parameter changes from a = 0.783 to aSI = 0.785 one of

the complex eigenvalue moves (in a jump fashion) to the right half plane and

becomes a large positive number while the other eigenvalue stays in the left half

plane but it becomes a large negative real number. Therefore, stability feature

of the equilibria undergoes an instantaneous change from stable to unstable

with exactly one eigenvalue. This stability exchange is due to an SI bifurcation

at which the Jacobian matrix [Dy g (x,y)] has a simple eigenvalue at the origin

and one of the eigenvalues of system matrix [Asys] becomes unbounded [3]. A
clear picture of the occurrence of the SI bifurcation with a much larger real
Fig. 5. Critical eigenvalues of the system matrix [Asys] as the parameter alpha (a) varies indicating
the SI and SN bifurcations.
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eigenvalue can be obtained at the expense of simulation time [14]. As a in-

creases further an SN bifurcation occurs at aSN = 0.8 and one of the critical

eigenvalues of [Asys] becomes zero while the other one remains in the left half

plane.

Fig. 4 also shows singular points computed at various values of a along the

nose curve, which are depicted by (x) and labeled as S1. It is worth mentioning
here that there are multiple singular points at any given parameter a. However,

we are interested in those that eventually meet with one of the equilibria lo-

cated in the lower branch of the nose curve as the parameter a is subject to vary

as illustrated in Fig. 4. Note that the singular point S1 at aSI = 0.785 coincides

with low voltage equilibrium indicating an SI bifurcation. In Fig. 4, we also de-

pict another singular point (S2) for a = 0.4 and aSI = 0.785 as to clearly show

the relative locations of other singular points that are not associated with

the SI bifurcation.
The relative location of singular points with respect to equilibria and SI

bifurcation point can be clearly seen using 2-D projections of the constraint

manifold. Fig. 6 shows a 2-D projection of the constraint manifold onto the

(V4,d2)-space for a = 0.4. The constraint manifold consists of two voltage cau-

sal regions (C1 and C2) separated by singular points S1 and S2. Note that each

voltage causal region contains a dynamically stable equilibrium points labeled

as (SEP)h and (SEP)l. These equilibrium points correspond to high and low

voltage equilibrium points at a = 0.4 shown in Fig. 4. Singular points S1 and
S2 are the same ones shown in Fig. 4 at a = 0.4, and they indicate the branch-

ing of the algebraic variables (i.e., load bus voltage magnitudes and angles)

when generator angles are considered as parameters. It will be informative to
Fig. 6. Constraint manifold projection onto the (V4, d2)-space at a = 0.4 for directionb0.



Fig. 7. Constraint manifold projection onto the (V4, d2)-space at a = 0.785 for direction b0.
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illustrate the occurrence of the SI bifurcation by using the constraint manifold

projection. Fig. 7 shows the same 2-D projection onto the (V4,d2)-space for

aSI = 0.785. This time; however, the low voltage equilibrium point (SEP)l
moves along the region C2 as a increases from a = 0.4 to aSI = 0.785 and

coincides with the singular point S1 while the high voltage one, (SEP)h, stays

in the region C1. Note that for this load increase pattern, both equilibria move
toward the singular point S1 not toward S2 along the regions as the parameter a
varies. Therefore, S2 or any other singular points rather than S1 are not asso-

ciated with the SI bifurcation.

As indicated in Remarks 1 and 2, any of the singular points shown in Fig. 4

along the nose curve could become an SI bifurcation point; and a new search

direction such that resulting nose curve passes through this SI bifurcation point

could easily be determined. In the following, we illustrate these steps for

a = 0.4: The real power mismatch vector at a = 0.4 is found as DPg =
[DP2 DP3]

T = [�0.085 03413]T. Following (22), entries of the new search direc-

tion corresponding to generator buses 2 and 3 will be dnew
Pg

¼ dnew
P2

dnew
P3

� �T ¼
0:2875 1:3533½ �T. Note that entries of the search direction vector correspond-

ing to the PQ load buses (i.e., buses 4 and 5) will not change: dnew
P ‘

¼
d0
P ‘
¼ �0:5 0½ �T and dnew

Q‘
¼ d0

Q‘
¼ �0:15 0½ �T. The resulting search direc-

tion vector that will yield a set of new equilibria including the singular point

S1 at a = 0.4 as being an SI bifurcation point is computed as

directionbnew ¼ 0:2875 1:3533 �0:5 0 �0:15 0½ �T:

The above procedure can easily be repeated for other singular points along

the nose curve. Fig. 8 illustrates three more nose curves obtained by new search
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directions at parameters a = 0.2,0.4, and 0.6 together with original nose curve

shown in Fig. 4. Note that each of new nose curves passes thru a singular point,

which is an SI bifurcation point. These new SI bifurcation points are labeled as

SI2, SI3, and SI4.

Fig. 9 illustrates the stability region in the generator injection space
(Pg2,Pg3-space) whose boundary is determined by the SI bifurcation depicted
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= [�0.15 0]T for the load buses.
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in Fig. 8. The region shows the possible set of generator injections that avoids

the occurrence of SI bifurcation for given load increase pattern specified by the

direction vectors dP‘
= [�0.5 0]T and dQ‘

= [�0.15 0]T for the load buses (buses

# 4 and 5).
6. Conclusions

In this paper we have presented an iterative method to locate and identify

singular points of the DAE model of the classical power system with constant

PQ load buses. In the method, generator angles are used to parameterize the

algebraic part of the DAE model and singular points are computed as being

the SN bifurcation of the algebraic part of the DAE model using a combined

NR–NRS iterative algorithm. Based on knowledge of location of singular
points and exploiting the decoupled structure of the DAE model we have deter-

mined new search directions in the bus injection (parameter) space. It has been

shown that set of equilibrium point corresponding to the new search directions

undergoes an SI bifurcation at the low voltage portion of the nose curve. The

simulation results for a 5-bus electric power system indicate the effectiveness of

the method.

The depiction of singular points together with the equilibria and their cor-

responding local bifurcations as a function of the parameters provides a com-
prehensive picture of the stability of the DAE model. Moreover, to use DAE as

tool for the analysis of power system dynamics, knowledge of where singular

points are located and how their location are changed with respect to para-

meters can be applied towards the definition of ‘‘limits’’ of appropriateness

for a given model.
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